TWO DITERPENE ALCOHOLS FROM CROTON SUBLYRATUS

EIICHI KITAZAWA and AKIRA OGISO

Central Research Laboratories, Sankyo Co., Ltd., 1-2-58 Hiromachi Shinagawa-ku, Tokyo 140, Japan

(Revised received 24 June 1980)

Key Word Index—Croton sublyratus; Euphorbiaceae; structural determination; anti reserpine ulcer; labdane; kaurane.

Abstract—The isolation and structural elucidation of two diterpene alcohols from *Croton sublyratus* are described. These compounds are $ent-3\alpha$ -hydroxy-13-epimanool and $ent-16\beta$,17-dihydroxykaurane.

INTRODUCTION

In the course of our search for constituents of plant origin with antipeptic ulcer activity, we have isolated 18-hydroxygeranylgeraniol [1] and plaunol A, B, C, D and E [2, 3] as principles with anti reserpine-induced and anti-Shay ulcer activity, respectively, from the Thai medicinal plant named Plau-noi, identified with stems of *Croton sublyratus* Kurz (Euphorbiaceae). Further investigation led to the isolation of two new diterpene alcohols (1 and 2) and we now report their characterization.

RESULTS AND DISCUSSION

Systematic fractionation of an acetone extract of the plant led to the isolation of two crystalline diterpene

alcohols (1 and 2) and a mixture of dihydroxygeranylgeraniols by extensive silica gel chromatography.

Diterpene alcohol I was recrystallized from acetone as colourless crystals, mp $86-87^{\circ}$, $[\alpha]_D^{22}-30.4^{\circ}$ (CHCl₃, c 1.0), MS m/e: 288 (M⁺ – H₂O). Its molecular formula was determined as $C_{20}H_{34}O_2$ by elemental analysis and MS. The IR spectrum had absorption bands at 3430 (–OH), 1645, 1410, 995, 915 (–CH=CH₂), 890 (–C=CH₂) and 1385, 1215, 1198 cm⁻¹ (–C Me₂).

The ¹H NMR spectrum indicated the presence of four tertiary methyl groups (δ : 0.68, 0.79, 0.90 and 1.20). ABC-type signals at δ 4.90, 5.12 and 5.85 were characteristic of the vinyl group, and broad singlets at 4.49 and 4.75 were assigned as an end methylene group. The presence of a

$$R^{1}O$$

$$R^{1} = H; R^{2} = H$$

$$R^{1} = Ac; R^{2} = H$$

$$R^{1} = Ac; R^{2} = Ac$$

2
$$R^1 = H$$
; $R^2 = H$

8
$$R^1 = Ac$$
; $R^2 = H$

9
$$R^1 = Ac$$
; $R^2 = Ac$

6

7

5

primary and a tertiary hydroxyl group was indicated by the fact that when 1 was treated with Ac₂O-pyridine at room temperature it gave the monoacetate (3) [1H NMR δ : 4.57 (H, brs) 2.03 (3H, s), IR v: 3460 cm⁻¹ (--OH)] and when I was heated with Ac₂O-NaOAc at 130 for 3.5 hr it gave the diacetate (4) [1 H NMR δ : 1.95 (3H, s), 2.01 (3H, s)]. In the ¹H NMR spectrum of 4 the singlet at 1.20 of 1 shifted to 1.49, which indicated that 1 had the partial formula -C(Me)(OH)-CH=CH,. These results and spectral data provided clear indications that 1 was a manool [4] (or 13-epimanool [5]) derivative possessing an additional secondary hydroxyl group. To determine the absolute structure of 1, the following chemical conversions were carried out. First, 1 was treated with CrO_3 —pyridine to give the ketone (5), mp 95.8°, MS m/e304 (M⁺), which gave the deoxy compound (6) of 1 by Huang-Minlon reduction. All physical and spectral properties of 6 accorded with those of ent-13epimanool [6]. Secondly, the monoacetate (3) was treated with $POCl_3$ -pyridine at -5, followed by deacetylation, to give an anhydro mixture, which was chromatographed over Si gel and $AgNO_3-Al_2O_3$ (15:85)[7] to give 7. Compound 7 was identical with 3α -hydroxy-12,13Ebiformen [8] in all respects except for the direction of optical rotation. The optical rotation of 7 and 3α hydroxy-12,13E-biformen were -1.0 and +4, respectively, 7 being the enantiomer of the latter. These chemical correlations indicated the absolute structure of compound 1 to be ent- 3α -hydroxy-13-epimanool.

Diterpene alcohol **2** was recrystallized from acetone as colourless prisms, mp 186–188, $[\alpha]_{\rm D}^{16}$ – 36.2 (CHCl₃, c 0.93), MS m/e 306 (M⁺). The IR spectrum of **2** had absorption bands at 3380 (—OH), 1385, 1370 cm⁻¹

(CMe_2) and no absorption band characteristic of an olefine structure. Its 1H NMR spectrum had signals at δ 0.79, 0.84 and 0.98 assigned as tertiary methyl groups. On treatment with Ac_2O pyridine at room temperature overnight and with Ac_2O at 130 for 4 hr, 2 [1H NMR δ : 4.12, 4.02 (AB, J=12 Hz, H-17)] gave the monoacetate (8) [IR v:3460 cm $^{-1}$ (^-OH), 1H NMR δ : 4.22 (2H, s, H-17), 2.31 (3H, s)] and the diacetate (9) [1H NMR δ : 4.77, 4.35 (AB, J=12 Hz, H-17), 2.08 (3H, s), 2.00 (3H, s)], respectively. These results and spectral properties characterized diterpene alcohol 2 as ent-16 β ,17-dihydroxykaurane derived from ($^-$)-kaurane [9] or sugeroside [10]. Comparison of the spectral and physical data of 2 and 8 with those of ent-16 β ,17-dihydroxykaurane and its monoacetate showed them to be identical.

EXPERIMENTAL

¹H NMR spectra were run with TMS as an int. reference. Analytical GLC was carried out with a glass column (1.0 m \times 3 mm) packed with 2 $_{\circ o}^{\circ}$ OV-225 on 80-100 mesh Chromosorb G, injection and detection temp.: 250; column temp.: 205, carrier gas: He at 60 ml/min.

Extraction and isolation. Crushed stems (81.5 kg) of Croton sublyratus were extracted $3 \times$ with Me₂CO under reflux. After evapn of the solvent, the residue was fractionated [1] to give diterpene alcohols 1 (1.47 g) and 2 (1.53 g) after Si gel chromatography (C₆H₆-EtOAc).

Diterpene alcohol 1. Mp 86 -87, $[\alpha]_{\rm D}^{22} = 30.4$ (CHCl₃, c 1.0); MS (75 eV) m/c (rel. int.): 288 (M⁺ - H₂O, 17), 273 (14), 270 (11), 255 (21), 175 (21), 152 (22), 135 (100), 107 (34), 93 (38); IR $v_{\rm max}^{\rm nuive}$ cm⁻¹: 3430, 1645, 1410, 1215, 1198, 1110, 995, 915, 890; 1 H NMR

 (CCl_4) : δ 5.85, 4.90, 5.12 (3H, ABC, $J_{AC} = 17$, $J_{BC} = 10$, $J_{AB} = 2$ Hz), 4.75 (1H, brs), 4.49 (1H, brs), 3.31 (1H, brs), 2.27 (1H, brs), 2.2 – 1.3 (15H, m), 1.20 (3H, s), 0.90 (3H, s), 0.79 (3H, s), 0.68 (3H, s). [Found: C, 78.44; H, 11.21, $C_{20}H_{34}O_2$ requires: C, 78.39; H, 11.18 $^{\circ}_{00}$.]

Diterpene alcohol 2. Mp 186–188 , $[\alpha]_{\rm b}^{\rm 16}$ – 36.2 (CHCl₃, c 0.93); MS (75 eV) m/e (rel. int.) 306 (M⁺, 1), 288 (5), 276 (36), 275 (100), 257 (23), 232 (9), 137 (15), 123 (20), 95 (17), 81 (18), 69 (16): IR $v_{\rm max}^{\rm BBr}$ cm $^{-1}$: 3380, 2930, 2870, 2840, 1480, 1465, 1450, 1435, 1385, 1370, 1065, 1040, 1025, 1025, 993, 880; $^{\rm 1}$ H NMR (Py- d_s): δ 5.00 (2H, brs), 4.12, 4.02 (AB, J=12 Hz), 2.43 (1H, brs), 2.1 ·1.1 (20H, m), 0.98 (3H, s), 0.84 (3H, s), 0.79 (3H, s). [Found: C. 76.02; H, 11.14. $C_{20}H_{34}O_2 \cdot \frac{1}{2}H_2O$ requires [9.10]: C. 76.14; H, 11.18° $_{or}$] [lit. [9]: mp 189–190 , [10]: mp 187.5–188.5 , $[\alpha]_{\rm b}^{\rm 16}$ – 36.5° (CHCl₃, c 0.91)].

Acetylation of 1. (1) Acetylation of 80 mg 1 with Ac₂O-pyridine for 2 days gave 48.3 mg the monoacetate (3) and 15.1 mg unreacted 1. 3: mp 65.9-67 : MS (75 eV) m/e (rel. int.): 330 (M⁺ - H₂O, 11), 288 (3), 270 (59), 255 (70), 188 (30), 176 (38), 135 (100), 119 (57), 107 (59), 93 (67); IR v_{max}^{nusiel} cm⁻¹: 3460, 3070, 1740, 1730, 1710, 1635, 1415, 1245, 1185, 1120, 1045, 988, 925, 895; ¹H NMR (CCl₄): δ 5.86, 5.09, 4.92 (3H, ABC, J_{AC} = 17, J_{BC} = 10, J_{AB} = 2 Hz), 4.78 (1H, brs), 4.57 (1H, brs), 4.54 (1H, brs), 2.03 (3H, s), 1.21 (3H, s), 2.6 - 2.1, 2.0 - 1.3, 1.2 - 1.0 (15H, m), 0.90 (3H, s), 0.86 (3H, s), 0.70 (3H, s). [Found: C, 75.69; H, 10.46 $C_{22}H_{36}O_3$ requires: C, 75.82; H, 10.41° o_{sr}]

(2) A mixture of 33 mg 1 and Ac₂O (1.5 ml)- AcONa (30 mg) was refluxed for 3.5 hr. Usual work-up gave 22 mg the diacetate (4) as a colourless oil, MS (75 eV) m/e (rel. int.): 390 (M $^{+}$, 0.4), 330 (37), 315 (12), 270 (76), 255 (62), 202 (23), 175 (35), 135 (100), 134 (65), 133 (49), 92 (12); IR $v_{\rm max}^{\rm login}$ cm $^{-1}$: 3060, 2920, 1730, 1635, 1445, 1370, 1245, 1180, 1040, 1015: 1 H NMR ($^{\circ}$ CCl₄): δ 5.84, 4.99, 4.98 (3H, ABC, $J_{\rm AC} = 18$, $J_{\rm BC} = 10$, $J_{\rm AB} = 2$ Hz), 4.73 (1H, brs), 4.52 (1H, brs), 4.42 (1H, brs), 2.01 (3H, s), 1.95 (3H, s), 1.49 (3H, s), 0.90 (3H, s), 0.86 (3H, s), 0.70 (3H, s), 2.7 – 2.1, 1.85 – 1.6, 1.45 – 0.95 (14H, m).

Oxidation of 1. A mixture of 122 mg CrO₃, 1.2 ml pyridine and 0.12 ml H₂O was added to 70 mg 1. The reaction mixture was allowed to stand overnight, and usual work-up gave 49 mg of the desired compound 5, mp 95.8; MS (75 eV) m/e (rel. int.): 304 (M⁺, 5), 286 (60), 271 (51), 258 (47), 243 (16), 201 (32), 135 (51), 133 (49), 123 (64), 107 (66), 93 (82), 71 (100); IR $v_{\rm max}^{\rm nuiol}$ cm⁻¹: 3450, 3080, 1710, 1705, 1695, 1640, 1203, 1000, 910, 897; ¹H NMR (CCl₄): δ 5.87, 5.14, 4.98 (3H, ABC, $J_{\rm AC}$ = 18, $J_{\rm BC}$ = 10, $J_{\rm AB}$ = 2 Hz), 4.87 (1H, brs), 4.62 (1H, brs), 2.7 - 1.3 (15H, m), 1.23 (3H, s), 1.06 (3H, s), 1.00 (3H, s), 0.88 (3H, s). [Found: C, 78.40; H, 10.52, $C_{\rm 20}H_{\rm 32}O_{\rm 2}$ requires: C, 78.90; H, 10.59 °₀.]

Huang–Minlon reduction of 5. A mixture of 134 mg 5, 0.2 ml 90% hydrazine-hydrate, 3 ml diethyleneglycol and 180 mg KOH was heated at 150-160 for 1 hr and at 240-250 for 1.5 hr under a N_2 atm., followed by usual work-up, to give 113 mg 6 as a colourless oil, $[\alpha]_0^{22} - 44.9$ (CHCl₃, c 2.3) [Lit. [6]: $[\alpha]_D - 46$ (CHCl₃, c 1.0)], spectral data were identical with those of *ent*-13-epimanool [6].

Dehydration and deacetylation of monoacetate (3). To a soln of 470 mg 3 in 8 ml pyridine was added 2.8 ml POCl₃ in 4 ml pyridine. The reaction mixture was allowed to stand overnight at -5. Usual work-up [7] gave 84.3 mg a colourless oil [MS (75 eV) m/e 330 (M⁺)], which was hydrolyzed to yield three components detected on TLC (R_f : 0.83, 0.73 and 0.64, solvent system: C_6H_6 -EtOAc, 1:1). The compound showing R_f 0.73 was separated by Si gel chromatography, and found to have three components on GLC. This olefinic mixture was chromatographed over AgNO₃-Al₂O₃ (15:85) eluting successively with Et₂O-hexane (9:1), Et₂O-MeOH (9:1) and Et₂O-MeOH (4:1). Elution with Et₂O-MeOH (4:1) gave desired 7 (colourless oil).

showing a single peak on GLC, $[\alpha]_D^{2^2} - 1.0^\circ$ (CHCl₃, c 0.7), [lit. [8], enantiomer: $[\alpha]_D^{2^4} + 4^\circ$ (CHCl₃, c 29.6)]. Spectral data were identified with those of 3α -hydroxy-12,13*E*-biformen [8].

Acetylation of **2**. (1) Diterpene alcohol **2** (50 mg) was treated with Ac₂O-pyridine to afford 40 mg monacetate (**8**), mp 151–152° [lit. [9]: 153.5–154°]. Spectral data were identical with those of ent-16β,17-dihydroxykaurane-17-acetate [9]. (2) A mixture of 20 mg **2** and 2 ml Ac₂O was refluxed for 3 hr to give 20 mg diacetate (**9**), mp 135–135.5°. MS (70 eV) m/e (rel. int.): 330 (M⁺ – HOAc, 47), 315 (14), 288 (14), 270 (100), 255 (44), 165 (29), 123 (37), 109 (24), 91 (35), 81 (39); IR v_{max}^{RBr} cm⁻¹: 2930, 1745, 1723, 1480, 1465, 1450, 1385, 1370, 1255, 1215, 1165, 1105, 1033, 1023, 935; ¹H NMR (CDCl₃): δ 4.94, 4.46 (2H, AB, J = 12 Hz), 2.49 (1H, m), 2.08 (3H, s), 2.00 (3H, s), 2.2 – 1.0 (20H, m), 1.02 (3H, s), 0.86 (3H, s), 0.81 (3H, s).

Acknowledgements—We wish to thank Mr. Ananta Laophanich of Asian TJD Enterprises Ltd., Thailand, and Mr. Chana Promdej of the Royal Forest Department in Thailand for their help in collecting the plants.

REFERENCES

- Ogiso, A., Kitazawa, E., Kurabayashi, M., Sato, A., Takahashi, S., Noguchi, H., Kuwano, H., Kobayashi, S. and Mishima, H. (1978) Chem. Pharm. Bull Jpn 26, 3117.
- Kitazawa, E., Ogiso, A., Sato, A., Kurabayashi, M., Kuwano, H., Hata, T. and Tamura, C. (1979) Tetrahedron Letters 1117.
- Kitazawa, E., Sato, A., Takahashi, S., Kuwano, H. and Ogiso, A. (1980) Chem. Pharm. Bull. Jpn 28, 227.
- 4. Brandt, C. W. and Thomas, B. R. (1952) Nature (London)
- Rowe, J. W. and Scroggins, J. H. (1964) J. Org. Chem. 29, 1554.
- Hugel, G., Oehlschlager, A. C. and Ourisson, G. (1966) Tetrahedron Supp. 8, Part 1, 203.
- 7. Carman, R. M. and Dennis, N. (1967) Aust. J. Chem. 20, 157.
- Bohlmann, F. and Czerson, H. (1979) Phytochemistry 18, 115.
- 9. Hanson, J. R. (1963) J. Chem. Soc. 5061.
- Ichikawa, N., Ochi, M. and Kubota, H. (1973) J. Chem. Soc. Jpn. Chem. Ind. Chem. 785.